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The past few years have seen a particularly rich period in the development of the explicitly
correlated R12 theories of electron correlation. These theories bypass the slow convergence
of conventional methods, by augmenting the traditional orbital expansions with a small
number of terms that depend explicitly on the interelectronic distance r12. Amongst the very
numerous discoveries and developments that we will review here, two stand out as being
of particular interest. First, the fundamental numerical approximations of the R12 methods
withstand the closest scrutiny: Kutzelnigg’s use of the resolution of the identity and the
generalized Brillouin condition to avoid many-electronic integrals remains sound. Second,
it transpires that great gains in accuracy can be made by changing the dependence on the
interelectronic coordinate from linear (r12) to some suitably chosen short-range form
(e.g., expð��r12Þ). Modern R12 (or F12) methods can deliver MP2 energies (and beyond)
that are converged to chemical accuracy (1 kcal/mol) in triple- or even double-zeta basis sets.
Using a range of approximations, applications to large molecules become possible. Here,
the major developments in the field are reviewed, and recommendations for future directions
are presented. By comparing with commonly used extrapolation techniques, it is shown that
modern R12 methods can deliver high accuracy dramatically faster than by using conventional
methods.
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1. Introduction

The slow convergence of electron correlation energies in orbital expansions limits the
accuracy that can currently be achieved in wavefunction quantum chemistry.
This slow convergence is coupled with a steep increase in computer resources as the
orbital expansions become larger. Consider, for example, calculations in the popular
correlation consistent basis sets of Dunning et al., cc-pVnZ with n ¼ 2, 3, 4, . . . for
double-zeta, triple-zeta, quadruple-zeta, etc. [1–5]. These basis sets are constructed
in a principal expansion, so that a double-zeta basis for a first-row atom consists of
3s2p1d, triple-zeta of 4s3p2d1f, and so on. The number of basis functions in these
sets increases as m ¼ Oðn3Þ. Since conventional electronic structure methods need
four-index two-electron integrals, the computational work associated with calculations
in these basis sets increases (at least) as t ¼ Oðm4Þ or t ¼ Oðn12Þ.

Unfortunately the errors in correlation energies decay only like � ¼ Oðn�3Þ [6, 7],
or, in terms of the number of basis functions, as � ¼ Oðm�1Þ [8]. This slow convergence
coupled with the steep rise in cost of calculations in larger basis sets leads to the terrible
relationship � ¼ Oðt�1=4Þ between error in correlation energies and computer time.
Thus the rewards in terms of accuracy for increasing computational effort are extremely
meagre: a 10 000-fold increase in computer resources gives only one order of
magnitude improvement in accuracy. Explicitly correlated methods circumvent this
very slow convergence by supplementing orbital expansions with terms that depend
explicitly on interelectronic distances.

1.1. The origin of the problem

The slow convergence of configuration interaction (CI) expansions in orbital basis
sets is linked to the presence of the correlation cusp in the wavefunction. As charged
particles approach one another, the Coulomb interaction – which scales like the
reciprocal of the interparticle distance – diverges. Nonetheless the local energy
E ¼ Ĥ�=� is constant everywhere for the exact wavefunction; thus the divergence
in the Coulomb energy must be exactly cancelled by the kinetic energy operator. This
can only be so if the wavefunction becomes linear in the interparticle distance as
the particles coalesce because �ð1=2Þr2r ¼ �1=r. A more rigorous examination of the
equations leads to the famous cusp condition of Kato [9],

@�ðr12Þ

@r12

� �
r12!0, av

¼
1

2
�ðr12 ¼ 0Þ ð1Þ

(‘av’ indicates spherical averaging) and to more general conditions by Pack and
Brown [10]. It is the difficulty of reproducing this cusp feature in the wavefunction
that makes convergence with respect to orbital expansions so difficult.

It has been argued (correctly) for quite some time that the actual contribution to
the energy from a small sphere of configuration space around the coalescence point is
negligible [11, 12]. So in fact it is not the cusp condition that is important for energies,
but rather the overall shape and size of the Coulomb hole. There are some properties,
nevertheless – notably the two-electron expectation value h�ðr12Þi that arises in the
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relativistic two-electron Darwin term [13] – for which the value at the cusp is the very
quantity of interest, and then special care is required to reproduce the cusp accurately.

1.2. Two-electron systems

Hylleraas, frustrated by the slow convergence of his orbital expansions for helium [14],
realized that the problem could be overcome by including terms in the wavefunction
that depend explicitly on interelectronic coordinates [15]y.

Hylleraas used the coordinates s ¼ r1 þ r2, t ¼ r1 � r2, u ¼ r12 to construct a
wavefunction for the helium atom in the form

�ðs, t, uÞ ¼ e��s
X
k‘m

ck‘ms
kt2‘um, ð2Þ

where only even powers of t appear to ensure the symmetry of the spatial wavefunction,
leading to the correct antisymmetric singlet ground state (para-helium). Even with
extremely small expansions of this kind, Hylleraas was able to reduce the discrepancy
with the experimental value of the ionization energy of helium from 0.12 to 0.01 eV.

Extensions of the Hylleraas approach to H2 were soon afterwards described by James
and Coolidge [18], and later by Kolos and Wolniewicz [19], but attempts to apply
such ideas to larger systems were hampered by the introduction of integrals over the
coordinates of many electrons. These integrals are typically not solvable in analytic
form, and, worse, they are so numerous that the computational effort involved grows
very steeply with the size of the problem.

1.3. Explicitly correlated MP2 methods

For MP2 calculations is it conventional to take advantage of the decomposition of the
second-order energy into a sum of pair contributions [20], a decomposition that requires
that the first-order pair functions juiji be strongly orthogonal to the occupied space.
In orbital based methods this is trivially achieved by expanding juiji in products of
virtual orbitals. In general, though, it is necessary to use an explicitly projected form
Q̂12juiji where Q̂12 is a projection operator onto the (complete) virtual space. The
Hylleraas functional [21]

H½uij� ¼ huijjQ̂12ðF̂1 þ F̂2 � �i � �jÞQ̂12juiji þ 2huijjQ̂12r
�1
12 jiji � �ð2Þij ð3Þ

can then be minimized for each pair to provide upper bounds for each MP2 pair energy.
(Here, and throughout sections 1 and 2, we use a spin-orbital formalism, in which i
and j denote spin-orbitals, and in which the functions juiji and jiji are understood
to be properly antisymmetrized. F̂ is the Fock operator and �i is an orbital energy.
For simplicity, we assume that the spin-orbitals are canonical Hartree–Fock orbitals.)

In conventional MP2 calculations, the pair functions juiji are built from one-electron
orbital products. In explicitly correlated MP2 theory, however, these pair functions

ySee also [16] for a modern perspective on Hylleraas’ achievements and [17] for an English translation.
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also contain terms that depend on the interelectronic coordinate explicitly. If the pair
function juiji is an explicit two-electron function (i.e. a geminal), then the second term
in equation (3) contains three-electron integrals, and the first contains both three- and
four-electron terms. The number of four-electron integrals scales asOðm8Þ, and although
the full integral transformation of these can be avoided, their evaluation still represents
a formidable computational challenge for all but the smallest of cases.

Three basic strategies have been developed to avoid the need to compute the
four-electron integrals in MP2 and other explicitly correlated theories: the
transcorrelated method of Boys, the weak orthogonality functional of Szalewicz et al.,
and the R12 approaches of Kutzelnigg and Klopper. The first two of these will be
outlined in the following sections; the last forms the main focus of the rest of this review.

1.4. Gaussian geminals

Boys [22] and Singer [23] independently realized that it was possible to compute
(analytically) all of the necessary integrals for explicitly correlated calculations on
molecules, provided that both the one- and two-electron basis functions took
the form of Gaussians. This being the case, all many-electron integrals that arise can
be reduced exactly to expressions involving the Boys function Fm(T). Although a
most significant advance, the problem of the rapidly scaling number of many-electron
integrals still obstructed applications to larger systems.

In the 1980s, Szalewicz, Jeziorski, Monkhorst and Zabolitzky introduced a scheme
for performing MP2 calculations that capitalized on the advantages of the Gaussian
geminals of Boys and Singer but, through an ingenious device, managed to avoid
the need to compute any four-electron integrals at all [24, 25]. This is achieved through
the weak orthogonality functional (WOF), which retains a strict upper bound to the
second-order energy.

The WOF has the form

W½uij� ¼ huijjF̂1 þ F̂2 � �i � �jjuiji þ 2huijjQ̂12r
�1
12 jiji

þ �ijhuijjÔ1 þ Ô2juiji � �ð2Þij , ð4Þ

where �ij is a positive parameter satisfying �ij � ð�i þ �jÞ=2� �1 and where �1 is the
orbital eigenvalue of the lowest occupied orbital. The Ansatz used for the pair function
in WOF studies has the form

juiji ¼ Â �ð1Þ�ð2Þ
X
p

ape
��pj~r1� ~Apj

2��pj~r2� ~Bpj
2��pj~r1�~r2j

2

 !
, ð5Þ

with full optimization of all linear coefficients ap, all exponents �p, �p and �p, and
of all function centres ~Ap and ~Bp, which are not constrained to be coincident with
nuclei (Â is an antisymmetrizer and � is a spin function). All parameters are
optimized individually for each pair function juiji. Szalewicz et al. were able to obtain
highly converged MP2, MP3 and coupled-cluster results for a variety of small molecules
and atoms [26–28].
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One disadvantage of the WOF Gaussian geminals method as used by Szalewicz et al.
is the need for expensive non-linear optimizations of basis set parameters. This is
necessary to obtain extremely high accuracy, but if an efficient method to obtain
MP2 energies converged to chemical accuracy is the target, one can imagine geminals
theories that involve optimization of linear expansion coefficients only. This was exactly
the approach of Persson and Taylor, who investigated the possibility of augmenting
conventional MP2 calculations with a modest set of (say, six) Gaussian geminal func-
tions expð��r212Þ [29–33]. This research suggested that high accuracy could be achieved
in modest AO basis sets (of around triple-zeta quality) augmented by a small number of
Gaussian geminal functions.

Despite the successes, it remains the case that Gaussian geminals calculations (with
or without non-linear optimizations) with exact three-electron integral evaluation are
limited to high accuracy studies of small systems. Furthermore, it seems that the penalty
function �ijhuijjÔ1 þ Ô2juiji in the WOF may lead to poor results if small basis sets
are used. For example, a second-order MP2 correlation energy of only �333:1mEh

is obtained for the neon atom if nine Gaussian geminal functions with even-tempered
exponents in the range of 1/9 to 729a�2

0 are added to a conventional MP2 expansion
in the aug-cc-pCVDZ basis (see table 7.10 of [32]; the basis set limit is
�388:1 mEh [34]). A similar calculation with six contracted Gaussian geminals, however
not relying on the WOF but rather on the approximations discussed in section 3,
yields �376:5 mEh.

Note that in this review, we distinguish between Gaussian geminals methods,
in which the whole pair function is expanded in Gaussian geminals (cf. equation 6),
and R12 (or rather F12) methods, in which the conventional expansion in terms of
orbital products is supplemented with a few Gaussian geminals (cf. section 2). The
methods of Szalewicz and coworkers [24–28] belong to the former, those of Taylor
and coworkers [29–33] belong to the latter.

1.5. Exponentially correlated Gaussians

The conclusion of the previous section that the Gaussian geminals method is limited to
small systems also applies to the method of exponentially correlated Gaussians (ECGs)
[35–38]: they are limited to high accuracy studies of extremely small systems. In the
ECG method, an expansion similar to equation (5) is chosen for the whole N-electron
full configuration interaction wavefunction,

� ¼ Â �S,MS
Ŝ
XK
k¼1

ck k

 !
, ð6Þ

where Â and Ŝ are permutational and spatial symmetry operators, respectively, and
�S,MS

is a proper spin eigenfunction. The N-electron basis functions j ki are of the
form [39]

 kð1, 2, . . . ,NÞ ¼ exp �
XN
i¼1

XN
j¼1

Aij, kð~ri � ~si, kÞ � ð~rj � ~sj, kÞ

" #
: ð7Þ
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Each basis function for a system with N electrons contains 3NþNðNþ 1Þ=2 non-linear
variational parameters (Aij, k, ~si, k) and depends on the coordinates of all electrons.
The resulting 3N-dimensional integrals can, however, be computed in closed form
[35, 40, 41]. For very small systems, the accuracy achieved with ECGs is unprecedented
(cf. [42] and references therein). ECGs can also be applied straightforwardly to fully
non-adiabatic computations [35, 43].

1.6. The transcorrelated method

Computations on fully correlated wavefunctions of the form

� ¼ C�, ð8Þ

where � is some suitably constructed reference wavefunction, and where

C ¼
Y
i<j

fð~ri, ~rjÞ, ð9Þ

are hampered by the introduction of coupled integrals over 3N dimensions for an
N-electron system. On the lines of previous work by Hirschfelder [44] and
Jankowski [45], Boys and Handy recognized that by using the non-Hermitian transcor-
related Hamiltonian ~H ¼ C�1ĤC they could formulate a set of approximate equations
for the wavefunction and for the energy that involved integrals over no more than three
particles at a time [46]. Furthermore, all of the three-electron operators that arise have
the form ½ ~r1fð~r1, ~r2Þ� � ½~r1fð~r1, ~r3Þ� (cf. [47] and references therein). In the Boys–Handy
work, they chose a flexible form for the correlation function fð~r1, ~r2Þ, which
does not lead to analytically solvable integrals. However, they noted that the
nine-dimensional integrals over ½ ~r1fð~r1, ~r2Þ� � ½~r1fð~r1, ~r3Þ� could be evaluated as two
analytic three-dimensional integrals followed by a three-dimensional quadrature.
This idea has been used more recently by Ten-no [48] (see section 3.4 below).

The same author has also examined the use of transcorrelated Hamiltonians with
frozen Gaussian geminal expansions for fð~r1, ~r2Þ [49, 50]. The method with a
Gaussian geminal expansion fitted to satisfy the cusp condition around coalescence
showed improved convergence in second-order perturbation theory and in the
coupled-electron pair approximation [51, 52]. The use of the non-Hermitian
Hamiltonian results in the loss of a strict upper bound to the exact energy, and more
flexible one-electron basis sets are required for stable results in comparison with
other explicitly correlated methods. Nevertheless, the transcorrelated formulation has
been useful for relevant advances in density functional theory [53] and quantum
Monte Carlo methods [54–56].

2. R12 wavefunctions

In the preceding section we have discussed various explicitly correlated
methods based on Gaussian geminals, exponentially correlated Gaussians and
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transcorrelated wavefunctions. These approaches have in common that the whole
wavefunction or the whole pair function juiji is expanded in explicitly correlated basis
functions. Kutzelnigg and Klopper proposed a different MP2 approach in the 1980s,
in which the pair function is first and foremost expanded in a basis of products
of virtual orbitals, as in conventional MP2 theory. This conventional expansion is
then supplemented by only one explicitly correlated basis function or a small number
of them [57–59]. In this review, we shall focus on this particular class of approaches,
which are denoted R12 methods, and in which a conventional expansion in terms
of orbital products is supplemented by one or a few explicitly correlated two-electron
basis functions.

2.1. Definition

In R12 methods the pair function juiji in the Hylleraas functional (equation (3)) has the
form

juiji ¼ jviji þ jwiji, ð10Þ

with

jviji ¼
X
k<l

cklij Q̂12f12jkl i ð11Þ

and

jwiji ¼
X
a<b

tabij jabi: ð12Þ

Here and in the following, orbital indices i, j, k, l, m will be used for spin-orbitals
occupied in the Hartree–Fock reference state; indices a, b, c, d for virtual spin-orbitals
and p, q, r, s for any molecular spin-orbitals. We restrict ourselves to real functions
and amplitudes cklij and tabij .

In practically all of the R12 work until now, the sum over k, l in equation (11) has
been restricted to occupied orbitals, but Taylor, Persson and Dahle and coworkers
have also considered sums over occupied and virtual indices k, b as well as over virtuals
a, b [29–33]. Recently, Neiss and coworkers have added a few seminatural virtual
orbitals to the sum over k, l in explicitly correlated coupled-cluster linear-response
calculations [60].

It is only since publication of [61] that the sum in equation (11) runs over the
occupied orbitals k and l. In the first implementations of R12 theory, the pair function
was restricted to only the diagonal term

vij
�� �

¼ cijQ̂12f12 ij
�� �, ð13Þ

with cij � cijij. This ‘diagonal’ Ansatz is, however, not invariant with respect to unitary
transformations of the occupied orbitals. For example, different energies were obtained
with canonical or localized Hartree–Fock orbitals (or with extremal electron pairs [62]).
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If localized MOs are used, the energies are close to those obtained with the pair function
of equation (11), and equation (13) may become useful again in the future in the context
of local correlation methods (cf. section 5.2).

The projection operator Q̂12 that appears in equation (11) was introduced in
section 1.3 above; this operator ensures the strong orthogonality of the pair function
juiji, and the various choices for the form of Q̂12 are discussed below. The factor f12
is the correlation factor, which is a function of r12, the distance between the electrons
1 and 2. Until very recently, this factor was always chosen as f12 ¼ r12, but other
functions have been used more recently, as we shall see below. Some researchers
speak of F12 methods in place of R12 methods if other functions than f12 ¼ r12
are used, to highlight the fact that a particular correlation factor f12 is used
instead of r12.

2.2. Correlation factors

Practically all of the early work with the R12 methods has been based on the correlation
factor

f12 ¼ r12, ð14Þ

which takes care of the correlation cusp (equation (1)) and the fact that the many-body
wavefunction is linear in r12 for very small interelectronic distance. Calculations with
the linear factor have been very successful, not only for very small molecules but also
for larger systems such as the water tetramer [63], the hydrogen fluoride pentamer
[64], ferrocene [65], [10] annulene [66], and the benzene dimer [67]. But there are also
two disadvantages connected with this linear correlation factor. First, the three- and
four-electron integrals involved in the electronic structure calculation are difficult
and cannot be evaluated analytically for a many-centre problem (the four-electron
integrals could be avoided by means of the WOF approach (see section 1.4), but the
three-electron integrals remain an obstacle). Second, the linear r12 term yields
a proper wavefunction for small interelectronic distance but shows the wrong
long-range behaviour.

Persson and Taylor [29, 30] (see also [68, 69]) have addressed these two drawbacks
by fitting an expansion in Gaussian geminals to the linear r12 term,

r12 �
X
v

bv 1� expð��vr
2
12Þ

� �
: ð15Þ

Using the WOF approach, only three-electron integrals occur in any molecular
calculation, and these three-electron integrals can be computed analytically. They are,
however, numerous.

Samson and coworkers [70] have tried to damp the linear r12 term by multiplication
with a Gaussian function,

f12 ¼ r12 expð��r
2
12Þ ¼ r12 þOðr312Þ, ð16Þ
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so that the correlation factor vanishes for large interelectronic distances while retaining
the linear form for small r12. A correlation factor as in equation (16) seemed to open
perspectives for prescreening techniques in large molecules and could possibly be
used in local correlation methods. However, Samson [71] found that the exponent �
should have a rather small value in order to obtain results with the same quality
as those obtained with the linear r12 term, and a single Gaussian-damped r12 term
did not seem very promising at the time [71].

Recently, Ten-no [72] suggested the use of a Slater-type geminal of the form

f12 ¼ 1� expð��r12Þ ¼ �r12 þOðr212Þ: ð17Þ

Excellent results were obtained with this correlation factor, and the idea was quickly
picked up by other researchers [73, 74]. As for equation (16), the correlation
factor of equation (17) shows the correct asymptotes for r12!0 and r12!1.
The two-electron integrals that are required by the R12 methods can be computed
analytically, as shown in [72], but alternatively, the Slater-type geminal can be expanded
in terms of a few (3–6) Gaussian geminals [69, 73, 74], which gives rise to the correlation
factor

f12 ¼ 1�
X
v

bv expð��vr
2
12Þ � 1� expð��r12Þ

¼ �r12 � 1=2�2r212 þOðr312Þ: ð18Þ

The analogy with fitting STOs as expansions in GTOs, as done for the STO-3G
and STO-6G basis sets, is clear. We emphasize that it has been found important to
include not only a weighting function expð��r212Þ but also a proper Jacobian with r212
for the integration over r12 in the least-squares fit [73]. Tew and Klopper [73] have
also investigated

f12 ¼ r12
X
v

bv expð��vr
2
12Þ � r12 expð��r12Þ

¼ r12 � �r
2
12 þOðr312Þ: ð19Þ

The results obtained with the correlation factors of equations (18) and (19) did not
differ much. When optimizing the exponent �, it was found that the optimum value
for the correlation factor of equation (18) was twice as large as for that of equation (19),
compensating the factor of a half in the quadratic term. Thus, it seems that the term
quadratic in r12, which is missing in equation (16), is important.

The first results obtained with these correlation factors (equations 17, 18 and 19) are
very promising indeed. If a given accuracy is obtained with the linear r12 term using
a correlation-consistent basis set of the type aug-cc-pVnZ, then the same accuracy
can be obtained with the new correlation factors in the next smaller basis, that is,
aug-cc-pV(n� 1)Z. Since an increase in the cardinal number n causes an increase
in computing time by an order of magnitude, much computing time can be saved by
the new correlation factors. Moreover, new basis sets of the correlation-consistent
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type (which one could denote ‘explicitly-correlation-consistent’) may be designed
and optimized, leading again to significant savings in computing time.

2.3. Projection operators

In the first R12 work [58], the projection operator Q̂12 in the pair function
equation (10) was chosen as

Q̂12 ¼ ð1� Ô1Þð1� Ô2Þ, ð20Þ

to ensure that the pair function is, by virtue of the Brillouin theorem, strongly
orthogonal to the Hartree–Fock reference state. In equation (20), Ô1 is the projection
operator onto the occupied Hartree–Fock orbitals,

Ô1 ¼
X
i

’ið1Þ
�� �

’ið1Þ
� ��: ð21Þ

Later, in [75], it was suggested to orthogonalize the two-electron basis function
Q̂12f12jkli against all orbital products constructable in the given one-particle basis.
This is achieved by the projection operator

Q̂12 ¼ 1� P̂1P̂2

� 	
1� Ô1

� 	
1� Ô2

� 	
¼ 1� Ô1 1� P̂2

� 	
� 1� P̂1

� 	
Ô2 � P̂1P̂2, ð22Þ

where

P̂1 ¼
X
p

’pð1Þ
�� �

’pð1Þ
� �� ð23Þ

is the one-electron projection operator onto the given one-particle basis, in which the
calculation is carried out. Note that equation (22) is also obtained if the two-electron
basis function Q̂12f12jkli is orthogonalized against all pairs of virtual orbitals jabi.
By doing so, with

V̂1 ¼
X
a

’að1Þ
�� �

’að1Þ
� ��, ð24Þ

we obtain

Q̂12 ¼ 1� V̂1V̂2

� 	
1� Ô1

� 	
1� Ô2

� 	
¼ ð1� Ô1Þð1� Ô2Þ � V̂1V̂2

¼ 1� Ô1 1� P̂2

� 	
� 1� P̂1

� 	
Ô2 � P̂1P̂2, ð25Þ
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which is identical with equation (22). As long as all integrals and matrix elements are
evaluated exactly and no approximations are invoked, the various approaches with
the projection operators of equations (20), (22) and (25) are strictly equivalent.
It makes no difference whether the r12-dependent basis functions are orthogonalized
against the conventional orbital products or not.

In [75], it was recognized that the many-electron integrals occurring due to the terms
with the isolated projection operators onto the occupied space in equation (25),
that is, the operators Ô1 and Ô2, can be approximated accurately using a resolution-
of-the-identity (RI) approximation. This approximation implies that the operators Ô1

and Ô2 are replaced by the products Ô1P̂
0
2 and P̂0

1Ô2, where

P̂0
1 ¼

X
p0

’p0 ð1Þ
�� �

’p0 ð1Þ
� �� ð26Þ

is the projection operator onto an orthonormal auxiliary basis f’p0 g [76]. In this
RI approximation, we write

Q̂12 ¼ ð1� V̂1V̂2Þð1� Ô1Þð1� Ô2Þ

¼ 1� Ô1ð1� P̂2Þ � ð1� P̂1ÞÔ2 � P̂1P̂2,

� 1� Ô1ðP̂
0
2 � P̂2Þ � ðP̂0

1 � P̂1ÞÔ2 � P̂1P̂2: ð27Þ

Of course, if the orbital basis set, in which the wavefunction is expanded, is used as
auxiliary basis for the RI approximation, then P̂1 ¼ P̂ 0

1, and equation (27) reduces to

Q̂12 � 1� P̂1P̂2: ð28Þ

So far in this section we have referred to equation (20), which is the original Ansatz of
R12 theory and known today as Ansatz 2. In comparison with other Ansätze, it yields
by far the most accurate results. The form orthogonalized against the space of products
of virtual orbitals (equation (25)) was advocated by Wind et al. [77] and Valeev [78],
and is the method of choice for iterative approaches such as CC2-R12, CCSD(R12),
and CCSD-R12 (see below).

There is an alternative Ansatz – Ansatz 1 – that is now known to be less accurate, but
is of historical interest. In the early 1990s [79], it seemed more straightforward to derive
the final working equations of the theory by starting from the projection operator

Q̂12 ¼ 1� P̂1

� 	
1� P̂2

� 	
¼ 1� P̂1 � P̂2 þ P̂1P̂2 ð29Þ

and if the RI is performed in the MO basis (always the case at that time) the results were
identical to those obtained with equation (20). Invoking the RI we obtain

Q̂12 � 1� P̂1P̂
0
2 � P̂0

1P̂2 þ P̂1P̂2, ð30Þ

and if the RI is performed in the orbital basis, this is clearly equivalent to equation (28).
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By virtue of the projection operators, which can be either those of Ansatz 1 or those
of Ansatz 2, the Hylleraas functional equation (3) can be written as

H½uij� ¼ uij
� ��F̂1 þ F̂2 � �i � �j uij

�� �
þ 2 uij

� ��r�1
12 ij
�� � � �ð2Þij , ð31Þ

where juiji ¼ jviji þ jwiji is the pair function as defined in equation (10). The functional
can furthermore be expressed as

H½uij� ¼ H½vij� þH½wij� þ 2H½vij,wij�, ð32Þ

where H½vij� and H½wij� are Hylleraas-type functionals for the R12 and conventional
expansions, respectively, and where

H½vij,wij� ¼ hvijjF̂1 þ F̂2 � �i � �jjwiji ð33Þ

represents the coupling matrix elements between these two expansions. In Ansatz 1,
where the R12 functions jviji are strongly orthogonal on all products of virtual
orbitals in jwiji, this coupling is zero. Hence, H½vij� and H½wij� can be minimized
individually in Ansatz 1, and the minimum of H½wij� is just the conventional MP2
energy. The minimum of H½vij� is a correction to this conventional energy due to the
R12 functions and can be interpreted as a basis set incompleteness correction. In the
limit of a complete basis, H½vij� vanishes.

In Ansatz 2, assuming canonical Hartree–Fock orbitals, the coupling becomes

H½vij,wij� ¼
X
k<l

cklij

X
a<b

tabij
�
ab
�� F̂1 þ F̂2 � �a � �b

� 	
r12
��kl �: ð34Þ

The coupling in Ansatz 2 is not zero, except if we assume that the virtual orbitals ’a
and ’b are exact eigenfunctions of the Fock operators F̂1 and F̂2. This assumption is
equivalent with the assumption that the extended Brillouin condition (EBC) holds,
that is, that the orbital space is closed under the Fock operator. In practical calculations
in large basis sets, this is either assumed or the calculated matrix elements
habjðF̂1 þ F̂2 � �a � �bÞr12jkli are very small. Using the projection operators of
equation (22) or equation (25) for Ansatz 2 improves convergence of explicitly
correlated coupled-cluster calculations such as CC2-R12 and CCSD(R12) calculations
compared to those with the projection operators of equation (20), by virtue of this
small coupling.

2.4. Levels of theory

Concerning single-reference methods, the R12 approach has not only been implemented
at the level of second-order Møller–Plesset perturbation theory (MP2), but also
at higher orders of perturbation theory as well as coupled-cluster theory.
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Already in 1991, first results were reported for third-order Møller–Plesset theory
(MP3) and the configuration-interaction approach with doubles (CID), the latter
also in form of coupled-electron pair approximations (CEPA-0, CEPA-2) and
the coupled-pair functional (CPF) [80]. At that time, an auxiliary basis set f’p0 g
(see above) was not used, and in today’s terminology, one would say that Ansatz 1

(e.g. equation (29)) was used.
Soon hereafter, Noga and coworkers developed and implemented explicitly

correlated coupled-cluster methods with singles, doubles (CCSD-R12) and triples
excitations (e.g. CCSD[T]-R12, CCSD(T)-R12, CCSDT-1a-R12, and CCSDT-
1b-R12,) [81–88]. Today, these methods are available in the DIRCCR12 program [89],
which has been parallelized and includes an efficient calculation of triples correc-
tions [90]. This code has for instance been used to compute highly accurate atomization
energies and heats of formation of small molecules [91, 92] or to compute highly
accurate potential energy surfaces of molecules such as SiH�

3 [93], NH3 [94],
H3O

þ [95], and H2 � � �H2O [96].
A comprehensive exposition of the explicitly correlated coupled-cluster theory

is presented in [97], and the theory has been reviewed already on a few occasions.
See [98–101] and references therein.

Until very recently, explicitly correlated basis functions had been used in coupled-
cluster theory only in the framework of Ansatz 1, on the basis of equation (29), without
using an auxiliary basis set f’p0 g. More precisely, in [97], the theory had been developed
for the projection operator of equation (20), but due to the approximations and
assumptions that are introduced when implementing the theory, the working equations
that follow from equation (20) are equal to those that follow from equation (29).
However, certain terms and diagrams are exactly zero with the projection operator of
equation (29) while these terms and diagrams are zero only due to the approximations
invoked in the theory based on equation (20) [101].

If an auxiliary basis set is used, as proposed for MP2-R12 theory by Klopper and
Samson [76], then the coupled-cluster theories for Ansätze 1 and 2 differ. Currently,
work is in progress to implement the coupled-cluster models CC2-R12 and
CCSD(R12) in the DALTON [102] program (in conjunction with corrections for
triples) for both Ansätze using the auxiliary-basis-set approach and the projection
operators of equations (22) or (29), respectively. This implementation has already
been completed for Ansatz 1, where it can handle not only linear r12 correlation factors
but also other, novel correlation factors such as those discussed in [73]. The imple-
mentation also addresses excitation energies and response properties [60, 103–105].

2.5. Methods for open shells

It is relatively straightforward to implement R12 methods for open-shell cases that can
be described by coupled-cluster or Møller–Plesset perturbation theory based on
a single-reference state, for example a state obtained from a spin-unrestricted
Hartree–Fock (UHF) or a restricted open-shell Hartree–Fock (ROHF)
calculation [106]. This has been accomplished in the DIRCCR12-OS program,
where ‘OS’ indicates the possibility to perform calculations on open shells [89]. At
the MP2-R12 level, calculations based on a spin-unrestricted Hartree–Fock reference
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are also possible with the R12 modules of the programs MPQC [107] and
TURBOMOLE [108], the former using auxiliary basis sets for the resolution-of-
the-identity approximation and the latter using density-fitting techniques [109, 110].

For multireference open-shell cases of ground and excited states, Gdanitz and
coworkers [111, 112] have developed an explicitly correlated R12 theory at the level
of multireference configuration interaction (MRCI) theory. This explicitly correlated
MRCI approach is mostly applied in the size-extensive modified form of the
multireference averaged coupled pair functional (ACPF) of Gdanitz and
Ahlrichs [113], more recently also in a modified form denoted MR-ACPF-2 [114].

This explicitly correlated multireference approach has been made available through
the AMICA program [115], and has been applied in a series of papers by Gdanitz
and coworkers [116–122]. This method is particularly suited for computations of excited
states such as the valence excited states of methylene [123] and for computations
of globally accurate potential energy hypersurfaces for studies of chemical reactions.
An example for the latter has been provided recently for the reaction
FþH2!FHþH [124, 125].

3. Approximations of many-electron integrals

As we have seen, the slow convergence of dynamic correlation energies using conven-
tional CI expansions is efficiently avoided in explicitly correlated electronic structure
theory. The penalty is the introduction of many-electron integrals, which consist of
one of the operators in the electronic Hamiltonian and a power of correlation factors.
For instance, explicitly correlated MP2 methods involve the evaluation of three-electron
integrals of the form

ij
� ��r�1

12 Ô2 f12 klj i ¼
X
m

ijm
� ��r�1

12 f13 kmlj i, ð35Þ

ij
� ��½T̂12, f12�Ô2 f12 klj i ¼

X
m

ijm
� ��½T̂12, f12�f13 kmlj i ð36Þ

in addition to new two-electron integrals over f12r
�1
12 , ½T̂12, f12�, f

2
12, and ½½T̂12, f12�, f12�,

where T̂12 ¼ T̂1 þ T̂2 is the sum of kinetic energy operators for electrons 1 and 2,
respectively. Different treatments of the commutator between the exchange
operator and the correlation factor require additional integrals over many-electron
operators as f13r

�1
12 f23 and f13r

�1
14 f23. The success of the recent explicitly correlated

methods is indebted to the progress of the ingenious treatment of many-electron
integrals.

In equations (35) and (36), we no longer imply that the bra hijj and ket jkli
are antisymmetrized products of spin-orbitals. Rather, in this section, we are
concerned with integrals over spatial orbitals, that is, jkli � �kð1Þ�lð2Þ and
jklmi � �kð1Þ�lð2Þ�mð3Þ. For the sake of brevity, we use a spin-orbital formalism to
describe the wavefunctions (sections 1 and 2) but a simple spatial orbital picture
to discuss the integrals (section 3).
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3.1. Exact evaluation

The introduction of correlation factors directly dependent on r12 [14, 18] shows very
rapid convergence. Nevertheless a generalization to polyatomic molecules with more
than two electrons seemed almost impractical due to the difficulties of the mathematical
treatment of the complex integrals. The only reasonable expansion with explicit
formulas was developed by Boys and Singer [22, 23] in terms of correlated Gaussian
functions of the form

G ¼ exp �
X
iA

air
2
iA �

X
ij

cijr
2
ij

" #
ð37Þ

(see section 1.4). It was shown that all relevant integrals that arise in the use of the
correlated Gaussian functions can be evaluated [22, 23, 126] in forms that involve
at most one Boys function, defined as

FmðTÞ ¼

Z 1

0

u2m expð�Tu2Þdu: ð38Þ

Indeed, explicitly correlated Gaussian functions have been employed successfully in
adiabatic [126, 127] and non-adiabatic [35, 36, 128] electronic structure calculations
involving a few correlated particles. The mathematical features of the functions have
also been useful in many-body perturbation theories based on GTGs with various
orthogonal projectors [24–28, 129–134].

The correlated Gaussian functions are handicapped by the inability to describe
cusps in the wavefunction. Although the volume element 4	r212 ensures that the
cusp behavior does not contribute to the correlation energy at coalescence, yet
the exact Coulomb hole obeys the cusp conditions at finite r12. Furthermore, the
methods with correlated Gaussians involve full optimization of non-linear parameters.
More recently, Persson and Taylor showed that the linear r12 behavior in a suit-
able range can be represented by a few terms of GTGs and that tedious non-linear
optimization can be avoided by using a frozen GTG expansion [29]. The requirement
of four-electron integrals in explicitly correlated MP2 theory can be sidestepped
by the simplified WOF energy functional of Szalewicz and coworkers [24, 25]
(see section 1.4).

However, the evaluation of three-electron integrals is still expensive. This is especially
so for the integrals over ½T̂12, f12�f23, because they are inherently more complicated than
the others, and because the number scales quadratically in the number of terms in the
GTG fit. To maximize the efficiency, integral recurrence relations that work on
the object after taking the double summation over GTGs have been proposed [50].
It is also noted that the most important three-electron integrals of the linear r12
Ansatz can be calculated explicitly for atoms [77, 135]. Anyhow, since the three-electron
integrals are so numerous, the applications of these methods are restricted to atoms
and small molecules. Exact evaluation is nevertheless useful to examine the accuracy
of approximations of many-electron integrals.
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3.2. Approximations: GBC, EBC and ½K̂1, r12�¼ 0

The high computational cost of the ‘exact’ treatment of three- and four-electron
integrals that appear in explicitly correlated theories prevents application to chemically
interesting systems. Kutzelnigg’s breakthrough idea was to approximate such integrals
using an approximate resolution of the identity (RI) and to use partial wave analysis
to establish requirements on the RI basis [57] (see section 3.3 for a discussion of the
RI approach).

Direct application of the RI approximation to the matrix elements of the
zeroth-order operator

Bkl
ij ¼

�
vij
��F̂12

��vkl�, ð39Þ

which appear in the Hylleraas functional (equation (31)), is not possible because of its
slowly convergent partial wave expansion. (In equation (39), F̂12 ¼ F̂1 þ F̂2 is the sum
of the Fock operators of electrons 1 and 2.) The manipulations of this term to make
accurate RI approximations possible are therefore the key to the success of linear
R12 methods.

The original scheme for handling equation (39), due to Kutzelnigg and Klopper [58]
and in use by most researchers today, is referred to as ‘standard approximation’ (SA).
They rewrote the elementary matrix element of the zeroth-order Hamiltonian

Bkl
ij ¼

�
ij
��v̂y12F̂12v̂12

��kl�, ð40Þ

where

v̂12 ¼ Q̂12f12, ð41Þ

as

Bij
kl ¼ ij

� ��v̂y12v̂12F̂12

��kl �þ ij
� ��v̂y12 F̂12, v̂12

h i��kl �: ð42Þ

The first term on the right-hand side is easy to evaluate if the standard,

V̂F̂Ô �
BC

0, ð43Þ

and generalized,

ð1� P̂ÞF̂Ô �
BC

0, ð44Þ

Brillouin conditions are assumed [59], to obtain

�
ij
��v̂y12v̂12F̂12

��kl � �
GBC

ð�k þ �lÞ
�
ij
��v̂y12v̂12��kl �: ð45Þ
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The commutator in the second term of equation (42) is more tricky because of the
commutator of the Fock operator with the projector Q̂12,

F̂12, v̂12

h i
¼ F̂12, Q̂12

h i
f12 þ Q̂12 F̂12, f12

h i
: ð46Þ

The explicit evaluation of all of the terms that appear due to the first term is possible
[74, 136], but it can be avoided by making additional assumptions so that the
½F̂12, Q̂12� commutator vanishes. In Ansatz 2 (the practically important case) this
assumption relies only on the generalized Brillouin condition if the projector
of equation (20) is used. If the modified projector of equation (25) is used, the more
stringent extended Brillouin condition is required as well:

ð1� P̂ÞF̂V̂ �
EBC

0: ð47Þ

The impact of this approximation is significant [74], but can in any case be avoided.
The second commutator in equation (46) is decomposed into two parts,

F̂12, f12

h i
¼ T̂12, f12

h i
� K̂12, f12

h i
: ð48Þ

The matrix elements for the kinetic energy commutator are usually evaluated
analytically using a number of published algorithms [137–139], whereas the exchange
commutator (K̂12 ¼ K̂1 þ K̂2) is approximated via RI using a double completeness
insertion.

Kutzelnigg and Klopper also suggested a useful practical variant of the standard
approximation, where the exchange commutator is omitted altogether. This so-called
standard approximation A is simpler technically, because its matrix elements require
only single RI insertions and the cost of the integral evaluation scales linearly with
the size of the RI basis. The cost of integrals in standard approximation B, in which
the exchange commutator is computed rigorously, scales quadratically with the size
of the RI basis (see, however, [140] for a formulation of standard approximation B
that scales linearly with the RI basis set size). Energies computed in standard
approximation A approach the basis set limit from below and also converge
asymptotically slower than the results obtained with approximation B, OðL�5Þ and
OðL�7Þ, respectively. The MP2-R12/A energies computed with small Hartree–Fock
basis sets, however, are closer to the basis set limit than the corresponding
MP2-R12/B energies. It seems therefore that the standard approximation A can be
useful in practical computations using non-iterative methods, such as MPn, as long
as only medium accuracy is sought.

Note that the EBC and GBC approximations become more accurate as the
Hartree–Fock basis approaches completeness. The effect of EBC and GBC on
MP2-R12 energies computed with small basis sets was investigated by May et al.
[74]. These authors found that EBC and ½K12, r12� � 0 had an appreciable effect on
the energies, although the magnitude was significantly smaller than the residual
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basis set incompleteness error. The assumption of GBC was found to have an even
smaller effect on the energies. The recommendation of the authors was to avoid the
use of EBC and commutator approximation in the MP2-R12 methods.

Recently, Noga et al. suggested a significantly simpler method to deal with the matrix
elements of equation (39), which they dubbed standard approximation C [141].
They noted that if one expands the projectors in equation (40) explicitly, then
the only term that cannot be evaluated via RI is

�
ij
��f12F̂12f12

��kl�. The idea of
standard approximation C is to separate exchange from the rest of the Fock operator,

�
ij
��f12F̂12f12

��kl� ¼ �
ij
��f12ðF̂12 þ K̂12Þf12

��kl�
�
�
ij
��f12K̂12f12

��kl�: ð49Þ

The second term can be evaluated accurately via a double RI insertion because the
partial wave series for this integral converges quickly, as OðL�7Þ. The first term in
equation (49) is evaluated via the commutator identity

f12ðF̂12 þ K̂12Þf12 ¼
1

2
f12, F̂12 þ K̂12, f12

h ih i
þ
1

2
F̂12 þ K̂12, f

2
12

h i
þ

¼
1

2
f12, T̂12, f12

h ih i
þ
1

2
F̂12 þ K̂12, f

2
12

h i
þ

ð50Þ

The second term can be accurately approximated by the RI approach. The double
commutator is not evaluated in the linear R12 method (f12¼ r12), since

1

4
r12, T̂12, r12

h ih i
¼ 1: ð51Þ

The double commutator can be evaluated analytically for other correlation factors [69].
Not only is standard approximation C more rigorous than the original schemes

because no approximations are necessary other than RI, it is also simpler to implement,
because no integrals ½T̂12, f12� need to be evaluated. Finally, the results presented by the
authors using a single basis formalism indicate that the MP2-R12/C energies always lie
closer to the basis set limit than the corresponding MP2-R12/A and MP2-R12/B
energies. There is no reason to believe, however, that this result is a consequence
of superior convergence properties of the MP2-R12/C model. Because the effect
of GBC on MP2-R12 energies is completely negligible, MP2-R12/C energies are very
close to the MP2-R12/B energies computed without the assumption of EBC,
provided that the RI basis (or orbital basis in the single basis formalism) is nearly
complete [136].

3.3. Resolution of the identity

The three- and four-electron integrals that appear in matrix elements can be most
easily simplified via an approximate resolution of the identity (RI). For example,
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the following three-electron integral, which appears in all linear R12 methods

�
ijm
��r12r�1

13

��kml
�
�
X
p0

�
ij
��r12��p0m��p0m��r�1

12

��kl �, ð52Þ

is reduced to products of two-electron integrals. For reasons of technical simplicity,
an RI basis of atom-centred Gaussian functions is most often used.

Kutzelnigg realized [57] that the partial wave analysis of the RI error in atoms can
establish basic requirements on the RI basis fp0g for atoms and possibly also for
molecules. The three-electron integral in equation (52), for example, has a partial
wave expansion that truncates at angular momentum 3Locc for atoms. Therefore
the RI for such an integral is exact if the RI basis is saturated to 3Locc. Standard
approximations B and C also involve three-electron integrals such as

�
ijm
��r12r�1

13 r23
��mkl

�
�
X
p0q0r0

�
ij
��r12��p0q0��p0m��r�1

12

��mr0
��
q0r0
��r12��kl�, ð53Þ

whose partial wave expansion does not truncate but converges quickly [59]. The
RI basis for approximations B and C must include functions of all angular momenta,
but in practice the RI error due to omission of h-functions and higher is rather
small [141].

The original implementation of R12 methods utilized the Hartree–Fock
basis (or orbital basis) set for the RI. This technical simplification meant that the
Hartree–Fock basis set had to be very large. Klopper and Samson were the first to
implement a version of MP2-R12 theory using a separate RI basis, the ‘auxiliary
basis set’ (ABS) method [76]. The ABS method involves the replacement

1 ! P̂ 0, ð54Þ

where P̂0 is a projector on an orthonormal RI basis.
The RI error in the ABS method can be made as small as desired by increasing the

completeness of the ABS. Unfortunately, when the ABS is not sufficiently complete,
the RI error can quickly become too large. A key requirement on the RI basis set is
that it spans the Hartree–Fock basis set exactly,

P̂P̂ 0 ¼ P̂: ð55Þ

When this condition does not hold, the ABS approximation (equation (27)) can
break down,

exact : P̂ð1� P̂Þ ¼ 0, ð56Þ

ABS : P̂ðP̂0 � P̂Þ 6¼ 0, if P̂P̂0 6¼ P̂: ð57Þ

446 W. Klopper et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
1
2
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



The errors can be significant, especially when small Hartree–Fock basis sets are
used [78]. It is recommended in such situations to include the Hartree–Fock basis set
into the ABS, since then the condition of equation (55) holds automatically.
This approach is labelled ABSþ and has a smaller RI error than the ABS
method [78], at the expense of a larger auxiliary basis and therefore increased
computation times.

An alternative to the ABS is to approximate the orthogonal projector 1� P̂
directly,

X̂ � 1� P̂ � X̂0 ¼
X
p?

��p?�� p?��: ð58Þ

X̂0 is an approximate projector on the orthogonal complement to the given basis. This is
the crux of the ‘complementary’ ABS approach (CABS) [78]. A numerically robust
method to construct X̂0 applies a singular value decomposition to the overlap matrix
between the ABS and the given basis to construct X̂0 directly [78]. Other methods
of construction have been described as well [73]. The main advantage of the CABS
approach is its smaller RI error relative to the ABS approach for the same auxiliary
basis [78]. It should in principle also permit computations with smaller auxiliary basis
sets than required by the ABS method, because only the complementary space to the
given basis needs to be spanned by the auxiliary basis. Of course, it is hard to
ensure a priori (near)-orthogonality of Gaussian basis sets (except in some atomic
computations).

By analogy with the ABSþmethod, the RI error of the CABS method can be reduced
by including the Hartree–Fock basis into the ABS. This approach, known as
CABSþ, has a higher computational cost than CABS and yields energies in almost
complete numerical agreement with the ABSþ method [78].

3.4. Numerical quadrature

The methods that have transcended the restriction of small molecules break up
many-electron integrals into sums of products of two-electron objects. The simplest
way to achieve such a decomposition is based on numerical quadrature, which
was applied in the early work on the transcorrelated method [46] and more recently
in explicitly correlated MP2 theory [48]. The method represents electron repulsion
integrals as sums of two- and three-centre objects over grid points,

ðpqjrsÞ ¼ pr
� ��r�1

12 qs
�� �

¼
X
g

��pð~rgÞ�qð~rgÞ rh jr�1
1g sj i, ð59Þ

where ��pð~rgÞ denotes a weighted orbital of the quadrature,

��pð~rgÞ ¼ wð~rgÞ�pð~rgÞ, ð60Þ
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and p
� ��r�1

1g q
�� � are Coulomb integrals for the interaction with a unit point charge at the

grid point ~rg,

p
� ��r�1

1g q
�� � ¼ Z

d~r1�pð~r1Þ�qð~r1Þj~r1 � ~rgj
�1: ð61Þ

The expansion of equation (59) involves at most three-index objects. Thus, the scaling
of for instance the first integral transformation in an MP2 calculation is reduced
from N4O to N2OG for the numbers of occupied and general functions, O and N,
respectively, and that of grid points, G. This reduction is advantageous if G � N2.
For a suitable numerical quadrature, we can make use of the recent developments
in DFT, that is, the invention of the fuzzy Voronoi polyhedra [142]. (See also the
later refinements to gridding [143–146].) It is noted that the pseudospectral methods
use the same type of expansion with different choice of weights [147–149], and similar
quadratures occur in discrete variable representation (DVR) methods [150–152].

Similarly, all two-electron integrals in explicitly correlated electronic structure theory
can be evaluated by numerical integration. For instance, the integrals over ½T̂1, f12�
are estimated as

pq
� �� T̂1, f12

h i��rs� ¼X
g

��pð~rgÞ �rð~rgÞ q
� ��A1g sj i þ ~grð~rgÞ � q

� �� ~B1g sj i
h i

, ð62Þ

A1g ¼ �ðr2
1f1gÞ � ð~r1f1gÞ � ~r1, ð63Þ

~B1g ¼ �ð ~r1f1gÞ, ð64Þ

~gpð~rgÞ ¼ ~r�pð~rgÞ
h i

: ð65Þ

In explicitly correlated MP2 methods, two-electron integrals involve at least two
occupied orbitals. Thus the grid in the expressions of two-electron integrals should
exactly integrate the spherical harmonics at least up to ‘ ¼ 2ðLocc þ LbasÞ for the
maximum angular momentum quantum numbers of the occupied shells and given
basis set, Locc and Lbas, respectively.

The most important feature of using the numerical quadrature is that the
three-electron integrals can also be calculated directly,�

ijm
��r�1

12 f13
��kml

�
¼
X
g

��ið~rgÞ�kð~rgÞ j
� ��r�1

1g mj i mh j f1g lj i, ð66Þ

ijm
� ��½T̂1, f12� f12

��kml
�
¼
X
g

��ið~rgÞ

	



�kð~rgÞhjjA1gjmi þ ~gið~rgÞ � hjj ~B1gjmi

�
hmj f1gjli: ð67Þ

For this, the grids should integrate the spherical harmonics accurately up to ‘ ¼ 6Locc,
which is usually smaller than the requirement for two-electron integrals, 2ðLocc þ LbasÞ,
for a molecule without heavy atoms. If the outer-most occupied shell is filled
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completely, just the spherical average over m survives, reducing the requirement
to ‘¼ 4Locc. The orbital indices in an integral are coincident in the MP2 method
with the IJIJ (diagonal) Ansatz, i.e. ðijÞ ¼ ðklÞ in the above equations. In this case,
the accumulation involving the three-electron integrals scales as O3G, which is cheaper
than the integral transformation of the four-centre objects. Previous work showed
that the required number of grid points ranges from 1 to 30 thousand per atom for
a reasonable accuracy (in the order of 1 microhartree) [48].

3.5. Density fitting

Explicitly correlated calculations based on the RI approximation with ABS or CABS
are rather expensive in comparison with the usual orbital-based expansion because
of the size of the ABS and the requirement of new types of two-electron integrals.
Manby has mitigated this situation by introducing the density fitting (DF) technique
in explicitly correlated theory [69, 153]. DF approximates four-centre integrals by
two- and three-centre objects representing orbital products in terms of auxiliary
basis functions,

�pð~rÞ�qð~rÞ ’
X
A

CA
pq�Að ~r Þ: ð68Þ

The technique has been implemented for ab initio methods involving SCF [154, 155],
MP2 [156, 157], MCSCF [158, 159] and CCSD [160] besides the original use in DFT
[161, 162]. DF has also been termed RI in recent years (see for instance the review of
Kendall and Früchtl [163]). In this article, we use the label DF to avoid the confusion
with the RI that is used for the decomposition of many-electron integrals.

In the explicitly correlated DF-MP2-R12 theory [69, 153], robust fitting has
been employed. (See [164] for an account of robust fitting.) In what follows,
the property is explained for electron repulsion integrals. For a given set of
coefficients CA

pq, the integrals can be estimated by the approximate formulas,

ðepqjersÞ ¼X
AB

CA
pqJABC

B
rs, ð69Þ

ðepqjrsÞ ¼X
A

CA
pqJ

A
rs, ð70Þ

where JAB ¼ ðAjBÞ and JApq ¼ ðAjpqÞ. The errors in the approximate products,

�pq ¼ epq� pq, ð71Þ

appear to first order in the error of the approximate integrals. Nevertheless, the robustly
fitted expression eliminates them to leave only quadratic errors,

ðpqjrsÞrobust ¼ epqjrsð Þ þ ðpqjersÞ � ðepqjersÞ
¼ ðpqjrsÞ � ð�pqj�rsÞ: ð72Þ
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It is convenient to determine the coefficients by minimizing the diagonal elements
ð�pqj�pqÞ. If the auxiliary basis is uniform to all products �pð~rÞ�qð~rÞ, the expression
reduces to

ðpqjrsÞrobust ¼
X
A

�JApqJ
A
rs, ð73Þ

where �JApq are expansion coefficients based on the Coulomb criterion,

CA
pq ¼

�JApq ¼
X
B

ðJ�1ÞABJ
B
pq: ð74Þ

It has been shown that the SCF energy using this expression is more accurate than other
approximate formulas with the overlap metric by 1–2 orders of magnitude [155].

The explicitly correlated DF-MP2-R12 methods replace all necessary two-electron
integrals in MP2-R12 by robustly fitted expressions [69, 153]. In this work, the
coefficients of the Coulomb criteria �JApq were employed for all classes of integrals.
For instance, the integrals over f12 are estimated as

ðpqj f12jrsÞrobust ¼
X
A

ð �JApqF
A
rs þ FA

pq
�JArsÞ �

X
AB

�JApqF
A
B
�JBrs ð75Þ

where FA
pq ¼ ðpqj f12jAÞ and FAB ¼ ðAj f12jBÞ. This allows us to utilize the robust fitting

for integrals over indefinite operators. The integrals over the commutator ½T̂1, f12�
can be rearranged using the Hermiticity of T̂1 as

ðpqj½T̂1, f12� ¼ ðfT̂1pgq� pfT̂1qgj f12: ð76Þ

Then the robustly fitted formula is given by

ðpqj½T̂1, f12�jrsÞrobust ¼
X
A

ð �Y
A

pqX
A
rs þ XA

pq
�YA
rsÞ �

X
AB

�Y
A

pqFAB
�YB
rs ð77Þ

with the definitions

XA
pq ¼ pq T̂1, f12

h i��� ���A� 	
, ð78Þ

�Y
A

pq ¼
X
B

ðJ�1ÞAB pq T̂1, r
�1
12

h i��� ���B� 	
: ð79Þ

The density-fitted MP2-R12 (DF-MP2-R12) theory has essentially the same numerical
properties as the original MP2-R12 formulation at a fraction of the cost.
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3.6. DF combined with RI

The framework of RI is not altered by the use of DF in the previous section, that is,
there remains the requirement of 3Locc in the RI basis. Ten-no and Manby introduced
another use of DF, which improves the convergence of the RI [165]. For a local opera-
tor (eg r�1

12 ), one can move an orbital from the ket to the bra to give the integral identity

ijm
� ��r�1

12 f13
��kml

�
¼ ðikÞjm

��r�1
12 f13

��1ml
�
,

�
ð80Þ

which can then be resolved using the RI to give

�
ijm
��r�1

12 f13
��kml

�
¼
X
p0

ðikÞj
� ��r�1

12 p0m
�� �

F
p0

ml, ð81Þ

where F
p0

ml ¼ p0m
� �� f12 1lj i. The symbol 1 in place of an orbital index indicates that

the orbital is made unity. Applying density fitting to avoid the 5-index integral in
equation (81), the three-electron integrals can be expressed as

ijm
� ��r�1

12 f13
��kml

�
¼
X
Ap0

CA
ikðAp

0j jmÞF
p0

ml: ð82Þ

As F
p0

ml in equation (82) involves just two occupied orbitals besides the RI index, p0, the
maximum angular momentum required for the RI is reduced from 3Locc to 2Locc in the
atomic limit. Thus, for s-, p- and d-occupied shells, we require s-, d-, and g-functions
instead of s-, f-, and i-functions in the RI expansion.

The expression of the integrals over ½T̂1, f12� is slightly more complicated because
of the presence of the kinetic energy operator. The fact that ½T̂1, f12� differentiates
at most one function of ~r1 leads to the relations

ijm
� ��½T̂1, f12� f13 kmlj i þ kjm

� ��½T̂1, f12� f13 imlj i

¼ 1jm
� ��½T̂1, f12� f13 ðikÞml

�� �
þ
�
ðikÞjm

���T̂1, f12
�
f13 1ml
�� �

¼
X
p0A

C A
ik Y

p0

jm p0m
� �� f12 Alj i þ Aj

� ��½T̂1, f12� p
0m

�� �
F

p0

ml

n o
, ð83Þ

where

Y
p0

jm ¼ 1j
� ��½T̂1, f12� p

0m
�� �

: ð84Þ

Then, we obtain the desired expressions of direct and exchange components within the
framework of explicitly correlated MP2 theory by substituting the indices,

ijm
� ��½T̂1, f12� f13 imj

�� �
¼

1

2

X
p0A

CA
ii Y

p0

jm

�
p0m

n ��� f12 Aj
�� �

þ Aj
� ��½T̂1, f12� p0m

�� �
F

p0

mj

o
, ð85Þ
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and

ijm
� ��½T̂1, f12� f13 jmi

�� �
¼ �

X
p0

jj
� ��½T̂1, f12� p

0m
�� �

p0m
� �� f12 iij i

þ
X
p0A

CA
ij Y

p0

jm p0m
� �� f12 Aij i þ Aj

� ��½T̂1, f12� p
0m

�� �
F

p0

mi

n o
: ð86Þ

The first term of the exchange integral in equation (86) has the form of a standard
RI decomposition. However, the convergence of the RI is much faster since the
integrals have the same occupied indices. For atoms saturated in degenerate shells,
the vector coupling coefficients survive just for ‘ ¼ 0 in the total energy because of
the independent summation over the coincident orbitals. As a result, the RI in this
term requires only Locc for a saturated energy.

It was shown that the improved RI with DF turned out to be more accurate by one
order of magnitude than the original RI method [165]. The four-index integrals remain-
ing in the combined DF-RI expression equation (82) suggests that there is room
for further improvement, that is, these integrals can be replaced by DF expressions.
At any rate, it is evident from the different applications of DF that the technology
enhances the efficiency and accuracy of explicitly correlated calculations.

4. Examples from second-order perturbation theory

Today, MP2-R12 calculations in large basis sets (comprising ca. 75 basis functions on
the hydrogens and 150–200 basis functions on the non-hydrogens, which is significantly
more than the minimum requirement of ca. 100 functions for non-hydrogens as
suggested by Bearpark and Handy [166]) can routinely be performed on molecules
with up to five non-hydrogens and five hydrogens, that is, of the size of thiophene,
urea and methyl formate (figure 1). Calculations in such large basis sets can yield
second-order correlation energies of benchmark quality to within 1mEh of the
basis-set limit. Note that 1 mEh corresponds to 2.6255 kJ/mol, which in turn roughly
corresponds to RT at 25�C. This level of accuracy is often referred to as ‘chemical
accuracy’ (see [167] for a recent review on the a priori calculation of molecular
properties to chemical accuracy).

Water Thiophene Urea Methyl formate

Figure 1. [Color online] Selected small molecules for which MP2-R12 calculations were carried
out. See table 2 for the Cartesian coordinates of the MP2(FC)/aug-cc-pV(Tþd)Z optimized
geometries.
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Calculations on much larger molecules and clusters are possible at the MP2-R12 level
if the density-fitting technique is invoked [69, 153], in particular in a local-correlation
framework [168, 169]. For example, accurate calculations in large basis sets (of approxi-
mately augmented quadruple-zeta quality) of hydrogen-bonded and 	-stacked weakly
bound complexes of 2-pyridone and tetra-, penta- and hexafluorobenzene are possible
at this level of theory [170].

In the present review, we focus on absolute correlation energies at the MP2-R12 and
MP2-F12 levels, using linear r12 and exponential (Slater-type) correlation factors,
respectively. Slater-type geminals yield superior results, but in very large basis
sets [73], the differences between the linear r12 and Slater-type correlation factors
become less important in comparison with the other approximations in the theory.
The new correlation factors are particularly helpful for calculations in comparably
small basis sets (of double- or triple-zeta quality).

4.1. Technical details

The calculations reported in section 4.2 were performed with the DALTON [102] and
MPQC programs [107]. The basis sets for the R12 calculations were derived in a
manner that is typical for highly accurate explicitly correlated calculations in a single
basis (i.e. one basis that is used both as orbital basis and as auxiliary basis for the RI
approximation of R12 theory). In such calculations, the basis sets are often derived
from rather large augmented correlation-consistent basis sets of at least quadruple-zeta
quality. Typically, such basis sets are used uncontracted and supplemented with
polarization functions with large exponents (tight functions). Since convergence with
angular momentum is fast with the R12 methods, polarization functions with very
high angular momentum functions can safely be omitted. The basis sets given below
were derived from the augmented quintuple-zeta basis, which was used without
contractions and without the h-type Gaussian functions. Recently, Noga and
coworkers [171–173] have designed and optimized universal R12 suited basis sets for
the first row atoms Li–Ne, but further research is required in this area to enable accurate,
numerically stable and balanced calculations on molecules containing heavier atoms.

In detail, the basis sets were constructed as follows: the 21s13p9d7f5g basis set for
S was derived from the primitive 21s13p6d4f3g set of the aug-cc-pV(5þd)Z basis of
Dunning and coworkers [174] by adding a 3d3f2g set of tight polarization functions.
Its exponents are given in table 1. Similarly, the 15s9p7d6f4g basis sets for C, N
and O were derived from the primitive 15s9p5d4f3g sets of the aug-cc-pV5Z basis of
Dunning and coworkers [175] by adding 2d2f1g sets of tight polarization functions
(cf. table 1 for the exponents). For H, a 1p1d set of tight polarization functions with
exponents 11.91 and 7.216, respectively, was added to the 9s5p4d3f primitive subset
of the aug-cc-pV5Z basis [175] to yield the final 9s6p5d3f basis used in the present
work. The basis sets for H, C, N and O are very similar to the basis sets of [176],
but not identical.

The calculations reported in section 4.3 were performed with the DALTON [102] and
the F12 program at Nagoya University. The present F12 method will be made available
to the public in the Gellan program package [177]. MP2-R12 calculations were
performed for Ansatz 2 in the standard aug-cc-pV(Qþd)Z (for S) and aug-cc-pVQZ
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(for C, N, O, and H) basis sets, using the ABS approach of Klopper and Samson [76],
for approximation B as proposed in [140]. The uncontracted aug-cc-pV5Z basis
(uncontracted aug-cc-pV(5þd)Z for S) was used as auxiliary basis. MP2-F12
calculations were performed for Ansatz 2 in the standard augmented correlation-
consistent basis sets with n ¼ 2, 3, 4, using a Slater-type geminal with exponent
1.5 a�1

0 and numerical quadrature with a medium-sized grid (13824 points per atom).
We used the analytic scheme for the Slater objects [72], and the hybrid RI and numerical
quadrature method was employed for four-electron integrals [178]. Results are
reported for calculations with explicitly correlated basis functions chosen according
to equation (11) or (13). In some calculations, the explicitly correlated amplitudes
(cklij or cij) were optimized by minimizing the Hylleraas functional, in other calculations
they were kept fixed to the derivative values 0.5 and 0.25 for singlet and triplet pairs,
respectively [48], to fulfill the cusp conditions explicitly [9, 10, 179].

All of the calculations were performed at fixed geometries of the molecules
studied. These geometries, which were optimized at the MP2(FC)/aug-cc-pV(Tþd)Z
level, are given in table 2. Only the valence orbitals were correlated in the MP2-R12
calculations, the core and semicore orbitals (1s for C, N and O; 1s, 2s and 2p for S)
were kept frozen.

4.2. R12 results in comparison with extrapolated values

The results of our MP2-R12 calculations are summarized in table 3. In similar work on
benchmark calculations on the molecules ethylene and ethane [180], in which localized
orbitals were used, it was found that the best estimate of the basis-set limit for the
valence-shell MP2 correlation energy was obtained by taking the weighted average
of the MP2-R12/A and MP2-R12/B values (cf. figure 1 of [180]). As in [180], we take
60% of the MP2-R12/A and 40% of the MP2-R12/B value.

The MP2-R12 results in table 3 are compared with the conventional MP2 correlation
energies that are obtained in the standard correlation-consistent cc-pVnZ and augmen-
ted aug-cc-pVnZ basis sets with n ¼ 2, 3, 4, 5, 6. Note that even in the largest basis
sets with n¼ 6, the errors in the valence-shell correlation energies of the four molecules
under study range from 5 to 15 mEh. For example, the cc-pV6Z value for thiophene is
in error by ca. 14 mEh. Even the corresponding aug-cc-pV6Z value is still in error

Table 1. Exponents of the tight polarization functions that were added to primitive
subsets of the aug-cc-pV5Z (for H, C, N and O) and aug-cc-pV(5þd)Z (for S) basis sets.

Type S C N O H

p 11.91
d 26.6 20.25 30.53 38.18 7.216

13.17 7.966 11.91 14.98
3.217

f 9.747 11.49 17.57 26.82
4.705 4.802 7.189 10.38
2.271

g 5.731 4.532 6.693 9.439
2.477
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Table 2. Fixed Cartesian coordinates (in Å) of a few selected small molecules.

Molecule Atom x y z

Water O 0.000 000 000 0 0.000 000 000 0 �0.057 338 488 5
H 0.758 133 054 3 0.000 000 000 0 0.533 819 244 2
H �0.758 133 054 3 0.000 000 000 0 0.533 819 244 2

Thiophene S 0.000 000 000 0 0.000 000 000 0 1.127 828 284 1
C 1.232 062 131 6 0.000 000 000 0 �0.050 916 134 8
C �1.232 062 131 6 0.000 000 000 0 �0.050 916 134 8
C 0.706 479 827 2 0.000 000 000 0 �1.326 340 960 3
C �0.706 479 827 2 0.000 000 000 0 �1.326 340 960 3
H 2.268 374 951 2 0.000 000 000 0 0.245 304 904 9
H �2.268 374 951 2 0.000 000 000 0 0.245 304 904 9
H 1.318 157 068 8 0.000 000 000 0 �2.216 370 776 9
H �1.318 157 068 8 0.000 000 000 0 �2.216 370 776 9

Methyl formate O 1.273 199 887 5 0.576 301 036 0 0.000 000 000 0
O �0.613 263 982 2 �0.680 960 014 5 0.000 000 000 0
C 0.713 863 063 4 �0.494 258 897 2 0.000 000 000 0
C �1.375 822 642 7 0.539 998 900 1 0.000 000 000 0
H 1.214 674 372 5 �1.466 132 204 7 0.000 000 000 0
H �2.414 508 165 9 0.231 159 101 7 0.000 000 000 0
H �1.145 350 316 3 1.125 149 089 3 0.886 598 447 1
H �1.145 350 316 3 1.125 149 089 3 �0.886 598 447 1

Urea O 0.000 000 000 0 0.000 000 000 0 1.305 566 819 5
N 1.156 642 341 1 0.058 840 693 8 �0.670 526 405 7
N �1.156 642 341 1 �0.058 840 693 8 �0.670 526 405 7
C 0.000 000 000 0 0.000 000 000 0 0.086 396 293 1
H 1.138 831 668 4 �0.386 381 510 0 �1.573 056 571 6
H �1.138 831 668 4 0.386 381 510 0 �1.573 056 571 6
H 1.986 961 026 8 �0.122 500 782 7 �0.130 660 879 0
H �1.986 961 026 8 0.122 500 782 7 �0.130 660 879 0

Table 3. Valence-shell second-order Møller–Plesset energies (in mEh) of a few selected small molecules.

Method Basis Water Thiophene Methyl formate Urea

MP2 cc-pVDZa
�0.201 959 �0.664 691 �0.638 743 �0.645 700

cc-pVTZa
�0.261 802 �0.814 987 �0.800 801 �0.809 833

cc-pVQZa
�0.283 131 �0.869 792 �0.859 000 �0.868 952

cc-pV5Za
�0.291 843 �0.891 720 �0.882 413 �0.892 497

cc-pV6Za
�0.295 543 �0.901 954 �0.892 930 �0.902 952

aug-cc-pVDZa
�0.219 730 �0.692 007 �0.674 261 �0.683 809

aug-cc-pVTZa
�0.268 710 �0.828 347 �0.815 959 �0.826 392

aug-cc-pVQZa
�0.286 258 �0.876 422 �0.866 169 �0.876 592

aug-cc-pV5Za
�0.293 246 �0.895 428 �0.886 111 �0.896 352

aug-cc-pV6Za
�0.296 296 �0.904 152 �0.895 104 �0.905 161

Uncontractedb �0.291 757 �0.889 648 �0.880 918 �0.891 102
MP2-R12/A Uncontractedb �0.300 928 �0.917 468 �0.908 925 �0.918 681
MP2-R12/A0 Uncontractedb �0.300 936 �0.917 538 �0.908 933 �0.918 697
MP2-R12/B Uncontractedb �0.300 271 �0.914 760 �0.906 713 �0.916 545
Best estimatec �0.300 7(4) �0.916 4(16) �0.908 0(13) �0.917 8(13)

a(aug-)cc-pV(nþ d)Z for S, (aug-)cc-pVnZ for C, N, O, and H.
b21s13p9d7f5g for S, 15s9p7d6f4g for C, N, and O, 9s6p5d3f for H.
cEstimated by taking 60% of MP2-R12/A and 40% of MP2-R12/B (see text). The number in parentheses indicates the
uncertainty in the last digits.
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by ca. 12mEh. We observe that the uncertainty in our best estimates is roughly
one order of magnitude smaller than the errors obtained in the plain and augmented
sextuple-zeta basis sets. In the last decade, there has been much interest in the
systematic behavior of the correlation-consistent basis sets with respect to
increasing n. By carrying out calculations for several values of n, this behavior
can be exploited to extrapolate to the basis-set limit, denoted here as E1. While
convergence to this limit is fast (i.e. of the type En ¼ E1 þ A expð�bnÞ) at the
Hartree–Fock and multireference (complete active space) self-consistent-field levels of
theory [181–183], dynamic correlation energies such as the MP2 second-order energy
converge rather slowly, that is, with an inverse-power law with respect to the cardinal
number n of the correlation-consistent basis sets.

Early attempts to extrapolate correlation energies from correlation-consistent
basis sets utilized the exponentional form that is appropriate for uncorrelated
wavefunctions [4, 184], and in 1996, Martin [185, 186] proposed an extrapolation for-
mula of the form

E‘ ¼ Aþ B=ð‘þ 1=2Þ4 þD=ð‘þ 1=2Þ6, ð87Þ

with ‘ the maximum angular momentum in the basis set.
Martin’s formula was motivated by the energy increments of partial-wave expansions

of atomic correlation energies [179, 187, 188], and similar expressions can be derived
from the convergence behaviour of the principal expansion [189, 190], in which the
principal quantum number n (or cardinal number n) is used to define an extrapolation
formula. Various extrapolation formulae of the general form

En ¼ Aþ B=ðnþ CÞ� ð88Þ

have been proposed and investigated for various values of C and � [6, 191–196]. Lee and
coworkers, in particular, have used various extrapolation formulae of this general type
for calculations on weakly bound complexes [197–201].

In the framework of the principal expansion, the simplest two-point extrapolation
formula is [6]

En ¼ E1 þ Bn�3: ð89Þ

Results from calculations in two basis sets are required to solve equation (89) for
the two unknowns B and E1. Usually, two subsequent basis sets of the correlation-
consistent hierarchy are chosen, and the results are commonly denoted cc-pV(DT)Z
if the double- and triple-zeta basis sets were used, cc-pV(TQ)Z if the triple- and
quadruple-zeta basis sets were used, and so on.

Although it is not the topic of the present review, a comment on other
extrapolation formulae that are currently in the literature seems in order.
Equation (89) appears to perform extremely well, in particular for larger basis sets, but
one could argue that formulae with other values for C and � might perform even
better. Firstly, MP2 basis-set errors tend to be larger than the basis-set errors at higher
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levels of perturbation theory and higher levels of excitation in the Møller–Plesset
or coupled-cluster hierarchies [103, 189, 198, 202]. Hence, different formulae for
MP2 and, for example, CCSD(T) extrapolations seem appropriate [195, 198, 202].
Secondly, the value of C can be chosen such that the next term (i.e. n�4) in the
expansion of En around n ¼ 1 is taken into account [193]. Thirdly, basis-set errors of
energies related to correlations between electrons with like and unlike spin behave differ-
ently. While the leading term of the basis-set error of singlet-coupled pairs is n�3, it is n�5

for triplet-coupled pairs [195, 203, 204]. These issues were first addressed 25 years ago
when Petersson and Nyden investigated the convergence behavior of electron correla-
tion energies with respect to the number of natural orbitals [205, 206]. To obtain
higher-order corrections for basis-set incompleteness, MP2 basis-set errors were multi-
plied with an ‘interference factor’ [207] to account for the fact that this error tends
to be overestimated at the MP2 level, and moreover, Petersson and coworkers [208]
applied different extrapolation formulae of the types n�3 and n�5 to the �� and ��
pair energies of MP2 theory.

Extrapolated MP2 correlation energies obtained using several popular extrapolation
schemes based on equation (88) are compared against our best explicitly correlated
values in tables 4–6. All extrapolated correlation energies obtained using the quintuple
and sextuple-zeta basis sets are in agreement with our best estimates to within the
uncertainty in these estimates. Thus, the quality of our estimates derived from
MP2-R12 theory is fully supported by the extrapolated values. Differences between
the extrapolation schemes are relatively minor but remarkable nevertheless. It has
been noted before [180, 195] that MP2 energies extrapolated using equation (88) with
C ¼ 1=2 (table 6) tend to be more accurate than the values obtained with C¼ 0
(tables 4 and 5). Indeed, the aug-cc-pV(TQ)Z values in table 6 already agree with our
explicitly correlated estimates. The quality of our extrapolated values obtained with
double- and triple-zeta basis sets is, however, rather low. Perhaps one should
expect much better performance for small basis sets from other recent
extrapolation schemes [196].

Table 4. Valence-shell second-order Møller–Plesset energies (E1 in mEh) obtained from the two-point
extrapolation formula En¼E1þBn�3 [6].

Extrapolation Water Thiophene Methyl formate Urea

cc-pV(DT)Z �0.286 998 �0.878 269 �0.869 036 �0.878 942
cc-pV(TQ)Z �0.298 696 �0.909 785 �0.901 468 �0.912 092
cc-pV(Q5)Z �0.300 984 �0.914 726 �0.906 977 �0.917 201
cc-pV(56)Z �0.300 624 �0.916 011 �0.907 376 �0.917 313
aug-cc-pV(DT)Z �0.289 334 �0.885 754 �0.875 621 �0.886 427
aug-cc-pV(TQ)Z �0.299 063 �0.911 504 �0.902 809 �0.913 225
aug-cc-pV(Q5)Z �0.300 577 �0.915 368 �0.907 033 �0.917 084
aug-cc-pV(56)Z �0.300 486 �0.916 136 �0.907 457 �0.917 262
Best estimatea �0.300 7(4) �0.916 4(16) �0.908 0(13) �0.917 8(13)

a See table 3.
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4.3. Comparison between R12 and F12 results

For a set of calculations in the aug-cc-pVQZ basis (aug-cc-pV(Qþd)Z for S and Cl)
on 28 small molecules, the MP2-R12/2A*, A, B* and B approaches yield 98:7
 0:6,
98:8
 0:9, 98:4
 0:6 and 98:4
 0:8%, respectively, of the estimated basis set limits
for the valence-shell MP2 energies, which were estimated in the same manner as
in the previous section for water, thiophene, methyl formate and urea. The set of
28 molecules comprises the 21 molecules investigated by Werner and Manby and
coworkers in [168] and [169] plus the molecules SO2, SO3, H2S, CS2, Cl2, COCl2 and
thiophene. The average percentages for these 28 molecules are similar but slightly
(0.3%) below the values of 99.0 and 98.7% reported in [76] for the MP2-R12/2A
and B methods, respectively, for a much smaller set of molecules in the
same aug-cc-pVQZ basis. In [76], the MP2-R12/2B value increases to 99.5% in the
aug-cc-pV5Z basis and to 99.8% in the aug-cc-pV6Z basis. Although the MP2-R12
methods perform very well, yielding 99% of the correlation energy or more, the results
are even better if Slater-type geminals are used in place of the linear r12 correlation
factor. For example, Tew and Klopper report that in the aug-cc-pVQZ basis,
the percentage of correlation energy is increased from 98.7% (MP2-R12/2B)

Table 5. Valence-shell second-order Møller–Plesset energies (E1 in mEh) obtained from the
two-point extrapolation formula En¼E1þBn��, where � is 3 and 5 for singlet and triplet pair

energies, respectively [203].

Extrapolation Water Thiophene Methyl formate Urea

cc-pV(DT)Z �0.281 823 �0.866 238 �0.855 218 �0.864 906
cc-pV(TQ)Z �0.296 742 �0.905 308 �0.896 290 �0.906 776
cc-pV(Q5)Z �0.300 109 �0.912 878 �0.904 888 �0.915 070
cc-pV(56)Z �0.300 305 �0.915 269 �0.906 567 �0.916 503
aug-cc-pV(DT)Z �0.285 571 �0.875 667 �0.864 568 �0.875 266
aug-cc-pV(TQ)Z �0.297 761 �0.907 977 �0.898 895 �0.909 307
aug-cc-pV(Q5)Z �0.300 061 �0.913 958 �0.905 497 �0.915 593
aug-cc-pV(56)Z �0.300 288 �0.915 589 �0.906 855 �0.916 683
Best estimatea �0.300 7(4) �0.916 4(16) �0.908 0(13) �0.917 8(13)

a See table 3.

Table 6. Valence-shell second-order Møller–Plesset energies (E1 in mEh) obtained from the two-point
extrapolation formula En ¼ E1 þ Bðnþ 1=2Þ�� , where � is 3 and 5 for singlet and triplet pair energies,

respectively [195].

Extrapolation Water Thiophene Methyl formate Urea

cc-pV(DT)Z �0.289 487 �0.885 757 �0.876 028 �0.885 972
cc-pV(TQ)Z �0.299 794 �0.913 244 �0.904 644 �0.915 252
cc-pV(Q5)Z �0.301 409 �0.916 195 �0.908 415 �0.918 613
cc-pV(56)Z �0.300 878 �0.916 867 �0.908 204 �0.918 131
aug-cc-pV(DT)Z �0.291 977 �0.893 606 �0.883 052 �0.893 855
aug-cc-pV(TQ)Z �0.300 325 �0.915 007 �0.906 197 �0.916 607
aug-cc-pV(Q5)Z �0.301 127 �0.916 856 �0.908 531 �0.918 604
aug-cc-pV(56)Z �0.300 767 �0.916 960 �0.908 264 �0.918 065
Best estimatea �0.300 7(4) �0.916 4(16) �0.908 0(13) �0.917 8(13)

a See table 3.
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to 99.6% (MP2-F12/2B) if a Slater-type geminal (represented by six contracted
Gaussians) with exponent 1.2a�1

0 is used in place of the linear r12 term. This corresponds
to a reduction of the error by a factor of three.

Table 7 shows the results obtained with Slater-type geminals for the four molecules
water, thiophene, methyl formate and urea. The results obtained from Slater-type
geminals are reported for calculations with pair functions of the form of equation (13),
in which only diagonal amplitudes cij occur. The differences between the results
obtained with the pair functions of equations (11) and (13) are expected to be
significantly smaller with a Slater-type geminal than with the linear r12 factor.
The Ansatz of equation (11) is able to correct for errors that occur if short- and
long-range linear r12 terms occur at the same time in one and the same pair function
that involves spatially extended, delocalized orbitals. In conjunction with linear r12
factors, the long-range terms are harmful, but they are taken care of by the
orbital-invariant approach of equation (11). Note that there is a large difference
(5–8mEh) between the results obtained from equations (11) and (13) for thiophene,
methyl format and urea, whereas this difference is much smaller (ca. 0.3 mEh) for the
comparably compact H2O molecule. With the Slater-type geminals, the long-range
terms do not contribute from the very beginning, and equation (13) seems appropriate
with these geminals. The orbital-invariance is nevertheless an important property to
avoid ambiguous results. The defects of equation (13) originate from the use of different
amplitudes for different pairs. Thus it is preferred to use the fixed amplitudes from the
cusp conditions [9, 10, 179] to retain the unitary invariance when equation (13)
is used. Anyway, the differences between equations (11) and (13) become very small
when we approach the basis set limit. This becomes clear when we compare the
large-uncontracted-basis MP2-R12 results of table 3, which are based on equation (11),
with the corresponding MP2-R12 results of table 7, which are based on equation (13).
The differences amount to only a few tenths of a millihartree in the large
uncontracted basis.

Comparing valence correlation energies obtained with MP2-R12/2B (optimized
amplitudes cklij ) and MP2-F12/2B (optimized amplitudes cij) in aug-cc-pVQZ,
we observe that in the latter method, errors are reduced by factors of 4.9 (H2O),
7.5 (thiophene), 5.5 (methyl formate) and 5.7 (urea) by the MP2-F12/2B approach.
The average proportions of the correlation energy recovered for the 28 molecules are
95.8, 99.0, and 99.7% at the MP2-F12/2B (fixed) and 96.8, 99.1, and 99.7%
at the MP2-F12/2B (optimized) level for the double-, triple-, and quadruple zeta
basis, respectively. It should be noted that the MP2-F12/2B (either with fixed
or optimized amplitudes cij) approach in the triple-zeta basis appears to be superior
to the MP2-R12/2B approach in the quadruple-zeta basis. Even in the double-zeta
basis, the MP2-F12/2B approach yields reasonably accurate energies, although the
difference between the approximations A and B is comparably large in this basis.
Also the effect of optimizing the amplitudes cij is much larger in this basis than
in the larger triple- and quadruple-zeta basis sets. The aug-cc-pVDZ basis is perhaps
too small for highly accurate calculations (also the underlying Hartree–Fock results
have not converged yet in this basis), but the Slater results obtained in this basis with
fixed amplitudes are remarkably accurate (conventional MP2 requires a basis set
of quadruple-zeta quality to yield similar results, cf. table 3).
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Table 7. Valence-shell second-order Møller–Plesset energies (in mEh) of a few selected small molecules.
Comparison between MP2-F12a and MP2-R12b results for Ansatz 2, with the explicitly correlated

basis functions chosen according to equation (11) or (13).

Method Equation Basis Water Thiophene Methyl formate Urea

Fixed cij
MP2-F12/2A* (13) aVDZc

�0.300 877 �0.889 208 �0.901 240 �0.909 362
MP2-F12/2A �0.298 633 �0.888 723 �0.898 220 �0.907 137
MP2-F12/2B* �0.292 500 �0.872 737 �0.879 032 �0.887 824
MP2-F12/2B �0.290 513 �0.872 350 �0.876 375 �0.885 870
MP2-F12/2A* (13) aVTZc

�0.301 109 �0.913 987 �0.908 855 �0.918 378
MP2-F12/2A �0.300 618 �0.913 234 �0.907 846 �0.917 681
MP2-F12/2B* �0.298 514 �0.907 942 �0.901 642 �0.911 357
MP2-F12/2B �0.298 055 �0.907 207 �0.900 681 �0.910 655
MP2-F12/2A* (13) aVQZc

�0.300 801 �0.916 732 �0.908 500 �0.918 403
MP2-F12/2A �0.300 658 �0.916 396 �0.908 190 �0.918 098
MP2-F12/2B* �0.299 991 �0.914 422 �0.906 128 �0.916 102
MP2-F12/2B �0.299 826 �0.914 048 �0.905 763 �0.915 746

Optimized cij
MP2-F12/2A* (13) aVDZc

�0.306 227 �0.923 614 �0.920 746 �0.930 238
MP2-F12/2A �0.303 411 �0.923 385 �0.917 042 �0.927 558
MP2-F12/2B* �0.293 929 �0.887 941 �0.885 394 �0.894 875
MP2-F12/2B �0.291 742 �0.887 751 �0.882 508 �0.892 774
MP2-F12/2A* (13) aVTZc

�0.301 423 �0.918 874 �0.910 433 �0.920 170
MP2-F12/2A �0.300 916 �0.918 040 �0.909 390 �0.919 470
MP2-F12/2B* �0.298 602 �0.909 805 �0.902 033 �0.911 766
MP2-F12/2B �0.298 141 �0.909 028 �0.901 063 �0.911 071
MP2-F12/2A* (13) aVQZc

�0.300 858 �0.917 513 �0.908 736 �0.918 663
MP2-F12/2A �0.300 715 �0.917 123 �0.908 423 �0.918 354
MP2-F12/2B* �0.300 037 �0.914 662 �0.906 226 �0.916 185
MP2-F12/2B �0.299 881 �0.914 260 �0.905 874 �0.915 838

Optimized cij
MP2-R12/2A* (13) aVQZc

�0.297 251 �0.895 865 �0.893 909 �0.904 565
MP2-R12/2A �0.297 644 �0.895 833 �0.895 145 �0.905 695
MP2-R12/2B* �0.296 157 �0.893 236 �0.889 580 �0.900 532
MP2-R12/2B �0.296 352 �0.893 074 �0.890 263 �0.901 119

Optimized cklij
MP2-R12/2A* (11) aVQZc

�0.297 647 �0.903 188 �0.898 843 �0.909 136
MP2-R12/2A �0.297 968 �0.903 405 �0.899 826 �0.910 029
MP2-R12/2B* �0.296 541 �0.900 396 �0.895 702 �0.906 123
MP2-R12/2B �0.296 679 �0.900 402 �0.896 216 �0.906 543

Optimized cij
MP2-R12/Ad (13) Uncont.e �0.300 926 �0.917 083 �0.908 724 �0.918 497
MP2-R12/Bd

�0.300 260 �0.914 159 �0.906 338 �0.916 189
Best estimatef �0.300 7(4) �0.916 4(16) �0.908 0(13) �0.917 8(13)

aUsing a Slater-type geminal with exponent 1.5 a�1
0 and numerical quadrature on a medium-sized grid (13824 points/atom).

bUsing the ABS approach, with the uncontracted aug-cc-pV(5þd)Z basis as auxiliary basis set (uncontracted
aug-cc-pV(5þd)Z for S and uncontracted aug-cc-pV5Z for C, N, O, and H).
c aug-cc-pV(nþd)Z for S, aug-cc-pVnZ for C, N, O, and H.
dCalculation without ABS. See table 3 for the corresponding energies with the explicitly correlated pair functions of
equation (12).
e See table 3.
f Taken from table 3.
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5. Perspectives

We first provide brief summaries of two important fields of current activity, aiming
for higher accuracy and larger systems, then offer our final conclusions on the recent
developments in the field.

5.1. Higher level methods

The highly accurate CC-R12 methods of Noga, Klopper, Kutzelnigg and coworkers can
readily be extended to make use of more realistic correlation factors. Work of this kind
is underway in the group of Klopper. The correlation factors of [73] can also be
exploited at the coupled-cluster level. In particular in the CCSD(R12) and
CCSD(T)(R12) models as developed by Fliegl et al. [103], the only minor complication
in the theory due to using a correlation factor f12 other than r12 occurs in the vector
components

VðijÞ

� ¼ h
�jf12r

�1
12 jiji � h
�jf12Q̂12r

�1
12 jiji, ð90Þ

where 
 and � are AO indices, i, j refer to occupied orbitals, and Q̂12 is a projection
operator. The CCSD(R12) and CCSD(T)(R12) models have been implemented for all
of the correlation factors of [73] for Ansatz 1 of R12 theory in the DALTON program.

5.2. Local approximations

The steep scaling of electronic structure methods with respect to system size is well
known to arise partly from the delocalized nature of the HF canonical orbitals. The
problem can be avoided through a variety of approaches that have in common
the use of localized orbitals [209–215].

In the local formulation of Werner, Schütz and coworkers, based on the earlier work
of Pulay and Saebø [209–213], it has proven possible to attain linear or near-linear
scaling for a variety of electronic structure methods including MP2 [216, 217],
CCSD [218, 219] and coupled-cluster triples [220–222].

It has also proven exceptionally advantageous to combine density fitting and local
approximations to create methods with low scaling with respect to system size
coupled with low prefactors and excellent performance in larger AO basis sets. This
approach has been applied in MP2 [223], MP2 gradients [224], HF theory [225]
and in coupled-cluster theory [226, 227].

For highly accurate calculations on very large (say, biological) problems, it is
necessary to couple explicitly correlated electronic structure methods with local
techniques. Work in this direction has already proven fruitful. Werner and Manby
recently implemented a local form of MP2-R12 theory in which the explicitly correlated
calculation is performed only for strongly correlated electron pairs [168]. Localization
of the resolution of the identity and of density fitting was investigated. The
success of the method was tempered slightly by the fact that poor asymptotic form of
the correlation factor r12 leads to non-negligible errors in extended systems.
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However, as detailed above, one of the key advances in R12-like methods of recent
years is the use of short-range correlation factors. This not only brings vastly improved
accuracy, but also makes local approximations easier to apply. Manby et al. therefore
implemented a local variant of MP2-F12 theory using a frozen linear combination of
Gaussian geminals to represent the correlation factor [169]. This theory, implemented
in the Molpro package [228], can be applied to large systems of fifty atoms or more,
and is very accurate. Using an aug-cc-pVTZ atomic orbital basis set, the correlation
energies for a test set of small first-row chemical reactions are converged to within
1 kJ/mol, about half of the remaining error in the Hartree–Fock reaction energies
in this basis set.

5.3. Conclusions

The fruitful recent history in the development of explicitly correlated electronic
structure methods leaves us with some clear conclusions, as well as some clear directions
for future work.

Applications of explicitly correlated methods to chemical problems are only
viable if the three- and four-electron integrals are computed approximately. The
R12-type methods, which approximate such integrals systematically, are presently
the only practical approach. Published R12-type methods are a combinatorial
manifold, owing to a number of explored correlation factors, Ansätze, and
approximations. The non-specialist can therefore find it difficult to compare the results
found in the literature and to decide which method to implement. Using the recent
results as a guideline, we recommend the following features of linear R12-type methods
as optimal from performance and implementation perspective.

5.3.1. Correlation factor. Although the precise form of the correlation factor is not
as important in highly accurate computations of small systems, correlation factors
other than linear r12 are essential to approach chemical accuracy in modest basis sets.
Bounded correlation factors are also desirable for numerical reasons. It appears that
a single Slater-type geminal factor expð��r12Þ is very close to optimal. The required
two-electron integrals can be computed in closed form, and it is sufficiently universal
to attain 99% accuracy for valence correlation energies of light molecules using
a triple-zeta basis. Proper description of heavier elements, as well as intracore and
core-valence correlation, will likely require a set of a few correlation factors.

5.3.2. Projection operator. Ansatz 2 for the strong-orthogonality projector should
be used in the form of equation (22) or equation (25). These projectors minimize the
coupling between conventional and R12-dependent amplitudes and thus improve
convergence of CC-R12 methods. The coupling matrix should be included in the
zeroth-order Hamiltonian and evaluated rigorously without the assumption of extended
Brillouin condition.
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5.3.3. Formulation of intermediate B. Approximation C offers the most compact
expression for intermediate B and may become the approximation to be preferred
over the standard ‘commutator’-based approach. The additional benefit is that the
more difficult integrals over the ½T̂i, f12� operator are not necessary. It is safe to
assume the generalized Brillouin condition to simplify or eliminate certain terms
in intermediate B. However, all of the approximations currently in use fail to guarantee
to yield an intermediate B that is positive definite, as is

Bkl
ij ðmnÞ ¼

�
ij
��v̂y12ðF̂12 � �m � �nÞv̂12

��kl�: ð91Þ

For computations of response properties and excitation energies, it is very important to
guarantee the positive definiteness [60].

5.3.4. Approximating integrals. The three- and four-electron integrals can be approxi-
mated well using the RI in atom-centred Gaussian basis sets, especially using the CABS
approach. The RI will likely become impractical for heavy elements when the demands
on the auxiliary basis become too extreme. Numerical quadrature, or the hybrid RI-DF
will likely be the preferred approach for such systems. In all methods, the integrals with
two RI indices can be avoided.

5.3.5. Efficiency improvements. Density fitting can be used to enhance computational
efficiency with practically no impact on the final accuracy of the results. Local methods
can be used to extend the methods to much larger systems, with small and controllable
errors.
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[224] M. Schütz, H.-J. Werner, R. Lindh, and F. R. Manby, J. Chem. Phys. 121, 737 (2004).
[225] R. Polly, H.-J. Werner, F. R. Manby, and P. J. Knowles, Mol. Phys. 102, 2311 (2004).
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R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn,
F. Eckert, C. Hampel, G. Hetzer, A. W. Lloyd, S. J. McNicholas, W. Meyer, M. E. Mura,
A. Nicklass, P. Palmieri, R. Pitzer, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni,
and T. Thorsteinsson, Molpro, version 2002.10, a package of ab initio programs, 2005, see http://
www.molpro.net

468 W. Klopper et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
1
2
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1


